Finding the Sum of the Largest and Smallest Fractions
Step 1: Convert the Fractions to Decimal Form
- \[ \frac{2}{3} \approx 0.6667 \]
- \[ \frac{3}{4} = 0.75 \]
- \[ \frac{4}{5} = 0.8 \]
- \[ \frac{5}{6} \approx 0.8333 \]
Step 2: Identify the Smallest and Largest Fractions
From the decimal values, we see that:
- Smallest fraction: \( \frac{2}{3} \)
- Largest fraction: \( \frac{5}{6} \)
Step 3: Add the Largest and Smallest Fractions
\[ \frac{5}{6} + \frac{2}{3} \]
Convert \( \frac{2}{3} \) to have a denominator of 6:
\[ \frac{2}{3} = \frac{4}{6} \]
Now, add the fractions:
\[ \frac{5}{6} + \frac{4}{6} = \frac{9}{6} = \frac{3}{2} \]
Final Answer:
Thus, the correct answer is (C) \(1 \frac{1}{2} \).