Step 1: Using the relationship for fcc crystals.
For an fcc structure, the edge length \(a\) is related to the atomic radius \(r\) by the equation:
\[
a = 2\sqrt{2} \times r
\]
Given that the edge length \(a = 4.29 \times 10^{-8} \, \text{cm}\), we can solve for \(r\):
\[
r = \frac{a}{2\sqrt{2}} = \frac{4.29 \times 10^{-8}}{2\sqrt{2}} = 1.85 \times 10^{-8} \, \text{cm}
\]
Step 2: Analyzing the options.
(A) \( 2.30 \times 10^{-8} \, \text{cm} \): Incorrect. This is too large.
(B) \( 6.19 \times 10^{-9} \, \text{cm} \): Incorrect. This is too small.
(C) \( 1.85 \times 10^{-8} \, \text{cm} \): Correct — This is the correct atomic radius for sodium in fcc structure.
(D) \( 1.61 \times 10^{-8} \, \text{cm} \): Incorrect. This is not the correct radius.
Step 3: Conclusion.
The correct answer is (C) \( 1.85 \times 10^{-8} \, \text{cm} \).