Step 1: Using the ideal gas law.
At STP, 1 mole of any ideal gas occupies 22.4 L. First, we convert 5.6 cm\(^3\) to liters:
\[
5.6 \, \text{cm}^3 = 5.6 \times 10^{-3} \, \text{L}
\]
The number of moles \( n \) is:
\[
n = \frac{V}{22.4} = \frac{5.6 \times 10^{-3}}{22.4} = 2.50 \times 10^{-4} \, \text{mol}
\]
Step 2: Total number of atoms.
Since each molecule of ammonia (NH\(_3\)) contains 4 atoms (1 nitrogen and 3 hydrogens), the total number of atoms is:
\[
\text{Atoms} = n \times 4 \times N_A = 2.50 \times 10^{-4} \times 4 \times 6.022 \times 10^{23} = 6.022 \times 10^{20} \, \text{atoms}
\]
Step 3: Conclusion.
The correct answer is (D) \( 2.50 \times 10^{-4} \) mol and \( 6.022 \times 10^{20} \) atoms.