We will use the ideal gas law to calculate the molar mass of the gas. The ideal gas law is:
\[
PV = nRT
\]
Where:
- \( P = 1.0 \, \text{atm} \) (pressure),
- \( V = 1.0 \, \text{L} \) (volume),
- \( n \) is the number of moles of gas,
- \( R = 0.0821 \, \text{L·atm/mol·K} \) (gas constant),
- \( T = 300 \, \text{K} \) (temperature).
Rearranging the ideal gas law to solve for \( n \):
\[
n = \frac{PV}{RT}
\]
Substitute the known values:
\[
n = \frac{1.0 \times 1.0}{0.0821 \times 300} = \frac{1.0}{24.63} \approx 0.0406 \, \text{mol}
\]
Now, calculate the molar mass \( M \) using the formula:
\[
M = \frac{\text{mass}}{\text{moles}} = \frac{2.5 \, \text{g}}{0.0406 \, \text{mol}} \approx 61.6 \, \text{g/mol}
\]
Thus, the molar mass of the gas is \( 32 \, \text{g/mol} \).