If \( E^\circ_{Fe^{2+}/Fe} = -0.441 \, \text{V} \) and \( E^\circ_{Fe^{3+}/Fe^{2+}} = 0.771 \, \text{V} \),
the standard emf of the cell reaction \( Fe(s) + 2Fe^{3+}(aq) \rightarrow 3Fe^{2+}(aq) \) is:
\[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \] For the reaction, \( Fe^{3+} \) is reduced to \( Fe^{2+} \) (reduction at the cathode), and \( Fe \) is oxidized to \( Fe^{2+} \) (oxidation at the anode). So: \[ E^\circ_{\text{cell}} = E^\circ_{Fe^{3+}/Fe^{2+}} - E^\circ_{Fe^{2+}/Fe} \] \[ E^\circ_{\text{cell}} = 0.771 \, \text{V} - (-0.441 \, \text{V}) = 0.771 + 0.441 = 1.212 \, \text{V} \] Hence, the standard emf of the cell reaction is \( 1.212 \, \text{V} \).
Consider the following
Statement-I: Kolbe's electrolysis of sodium propionate gives n-hexane as product.
Statement-II: In Kolbe's process, CO$_2$ is liberated at anode and H$_2$ is liberated at cathode.
O\(_2\) gas will be evolved as a product of electrolysis of:
(A) an aqueous solution of AgNO3 using silver electrodes.
(B) an aqueous solution of AgNO3 using platinum electrodes.
(C) a dilute solution of H2SO4 using platinum electrodes.
(D) a high concentration solution of H2SO4 using platinum electrodes.
Choose the correct answer from the options given below :
A solution of aluminium chloride is electrolyzed for 30 minutes using a current of 2A. The amount of the aluminium deposited at the cathode is _________
"जितेंद्र नार्गे जैसे गाइड के साथ किसी भी पर्यटन स्थल का भ्रमण अधिक आनंददायक और यादगार हो सकता है।" इस कथन के समर्थन में 'साना साना हाथ जोड़ि .......' पाठ के आधार पर तर्कसंगत उत्तर दीजिए।
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
There is a circular park of diameter 65 m as shown in the following figure, where AB is a diameter. An entry gate is to be constructed at a point P on the boundary of the park such that distance of P from A is 35 m more than the distance of P from B. Find distance of point P from A and B respectively.