To find highest power of a prime $p$ in $n!$, use:
\[
\left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \ldots
\]
Apply for $p = 5$, $n = 80$
\[
\left\lfloor \frac{80}{5} \right\rfloor = 16,\quad
\left\lfloor \frac{80}{25} \right\rfloor = 3,\quad
\left\lfloor \frac{80}{125} \right\rfloor = 0
\]
Total power of 5 = $16 + 3 = \boxed{19}$