\( 5.33 \times 10^{-10} \, \text{N} \)
\( 1.33 \times 10^{-9} \, \text{N} \)
The gravitational force is given by the formula:
\( F = \dfrac{G \cdot m_1 \cdot m_2}{r^2} \)
Substituting the values:
\( F = \dfrac{6.67 \times 10^{-11} \cdot 10 \cdot 20}{5^2} \)
\( F = \dfrac{6.67 \times 10^{-11} \cdot 200}{25} \)
\( F = \dfrac{1.334 \times 10^{-8}}{25} = 5.336 \times 10^{-10} \, \text{N} \)
Option 1: \( 5.33 \times 10^{-10} \, \text{N} \)
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below:
A small point of mass \(m\) is placed at a distance \(2R\) from the center \(O\) of a big uniform solid sphere of mass \(M\) and radius \(R\). The gravitational force on \(m\) due to \(M\) is \(F_1\). A spherical part of radius \(R/3\) is removed from the big sphere as shown in the figure, and the gravitational force on \(m\) due to the remaining part of \(M\) is found to be \(F_2\). The value of the ratio \( F_1 : F_2 \) is: 