What is the equivalent resistance between the points A and B of the network?

To solve for the equivalent resistance between points A and B, we first simplify the given resistances using series and parallel combinations.
Start by analyzing the network step by step: 1. Combine the resistances that are in series. 2. Combine the resistances that are in parallel. Once simplified, the equivalent resistance turns out to be 8 \( \Omega \).
Final Answer: 8 \( \Omega \).
Given below are two statements: one is labelled as Assertion (A) and the other one is labelled as Reason (R).
Assertion (A): Emission of electrons in the photoelectric effect can be suppressed by applying a sufficiently negative electron potential to the photoemissive substance.
Reason (R): A negative electric potential, which stops the emission of electrons from the surface of a photoemissive substance, varies linearly with the frequency of incident radiation.
In light of the above statements, choose the most appropriate answer from the options given below:

Which of the following statements are correct, if the threshold frequency of caesium is $ 5.16 \times 10^{14} \, \text{Hz} $?
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: