The neutralization reaction between \( \text{HCl} \) and \( \text{NaOH} \) is:
\[
\text{HCl} + \text{NaOH} \rightarrow \text{NaCl} + \text{H}_2\text{O}
\]
The number of moles of \( \text{HCl} \) is:
\[
n_{\text{HCl}} = M_{\text{HCl}} \times V_{\text{HCl}} = 0.100 \, \text{M} \times 0.0250 \, \text{L} = 0.00250 \, \text{mol}
\]
Since the mole ratio between \( \text{HCl} \) and \( \text{NaOH} \) is 1:1, the moles of \( \text{NaOH} \) required for neutralization are also \( 0.00250 \, \text{mol} \).
Now, calculate the molarity of \( \text{NaOH} \):
\[
M_{\text{NaOH}} = \frac{n_{\text{NaOH}}}{V_{\text{NaOH}}} = \frac{0.00250 \, \text{mol}}{0.0500 \, \text{L}} = 0.0500 \, \text{M}
\]
Thus, the concentration of \( \text{NaOH} \) is \( 0.10 \, \text{M} \).