The transformation ratio of a transformer is the ratio of the secondary voltage (\( V_s \)) to the primary voltage (\( V_p \)). It is given by the formula:
\[ k = \frac{V_s}{V_p} = \frac{N_s}{N_p} \]
\[ V_p = 2200 \text{ V} \quad \text{(Primary voltage)} \] \[ V_s = 220 \text{ V} \quad \text{(Secondary voltage)} \] \[ N_p = 5000 \quad \text{(Turns in the primary coil)} \] \[ \eta = 90\% = 0.90 \quad \text{(Efficiency)} \] \[ P_{\text{out}} = 8 \text{ kW} = 8000 \text{ W} \quad \text{(Output power)} \]
\[ k = \frac{V_s}{V_p} = \frac{220}{2200} = 0.1 \]
Using the turns ratio formula: \[ \frac{N_s}{N_p} = \frac{V_s}{V_p} \] \[ N_s = N_p \times \frac{V_s}{V_p} = 5000 \times \frac{220}{2200} \] \[ N_s = 500 \quad \text{(Turns in secondary coil)} \]
The efficiency of a transformer is given by: \[ \eta = \frac{P_{\text{out}}}{P_{\text{in}}} \] \[ P_{\text{in}} = \frac{P_{\text{out}}}{\eta} = \frac{8000}{0.90} \] \[ P_{\text{in}} = 8888.89 \text{ W} \approx 8.89 \text{ kW} \]
What is Lenz’s law?
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $