We want \(7^{2008} \bmod 100\).
Since \(\gcd(7,100) = 1\), Euler's theorem applies:
\[
\phi(100) = 40, \quad 7^{40} \equiv 1 \ (\bmod\ 100)
\]
Now, \(2008 = 40 \times 50 + 8\), so:
\[
7^{2008} \equiv (7^{40})^{50} \times 7^8 \equiv 1^{50} \times 7^8 \ (\bmod\ 100)
\]
We compute \(7^4 = 2401 \equiv 1 \ (\bmod\ 100)\), hence \(7^8 \equiv 1\).
Thus, the last two digits are \(\boxed{01}\).