What are fuel cells? State Two advantages of hydrogen-oxygen fuel cell over ordinary cell.
Step 1: Definition of Fuel Cells: Fuel cells are electrochemical devices that convert chemical energy into electrical energy through a redox reaction between fuel (e.g., hydrogen) and an oxidizing agent (e.g., oxygen).
Step 2: Advantages of Hydrogen-Oxygen Fuel Cell: 1. Higher Efficiency: Fuel cells have higher efficiency compared to conventional electrochemical cells. 2. Eco-friendly: Produces only water as a byproduct, making it environmentally friendly.
1 Faraday electricity was passed through Cu$^{2+}$ (1.5 M, 1 L)/Cu and 0.1 Faraday was passed through Ag$^+$ (0.2 M, 1 L) electrolytic cells. After this, the two cells were connected as shown below to make an electrochemical cell. The emf of the cell thus formed at 298 K is:
Given: $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = 0.34 \, \text{V} $ $ E^\circ_{\text{Ag}^+/ \text{Ag}} = 0.8 \, \text{V} $ $ \frac{2.303RT}{F} = 0.06 \, \text{V} $
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $