Volume of a gas at NTP is \( 1.12 \times 10^{-7} \, \text{cm}^3 \). The number of molecules in it is:
Show Hint
To calculate the number of molecules for a given volume, use the relation:
\[
\text{Number of molecules} = \frac{\text{Volume of gas}}{22,400 \, \text{cm}^3} \times 6.02 \times 10^{23}.
\]
This allows you to scale the number of molecules for any given volume at NTP conditions.
At NTP, \( 22,400 \, \text{cm}^3 \) of gas contains \( 6.02 \times 10^{23} \) molecules.
For \( 1.12 \times 10^{-7} \, \text{cm}^3 \), we can calculate the number of molecules using the proportionality between volume and number of molecules:
\[
\text{Number of molecules} = \frac{6.02 \times 10^{23}}{22,400} \times 1.12 \times 10^{-7}.
\]
Simplify:
\[
\text{Number of molecules} = \frac{6.02 \times 1.12 \times 10^{23} \times 10^{-7}}{22,400}.
\]
Now, calculate:
\[
\text{Number of molecules} = 3.01 \times 10^{12}.
\]
Final Answer:
\[
\boxed{3.01 \times 10^{12}}.
\]