Step 1: Understanding the Concept:
Three points are collinear if they lie on the same straight line. This can be verified by showing that the slope of the line segment connecting any two points is the same as the slope of the line segment connecting any other two points.
Step 2: Key Formula or Approach:
The slope \(m\) of a line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by the formula:
\[ m = \frac{y_2 - y_1}{x_2 - x_1} \]
We will calculate the slope of AB and the slope of BC. If they are equal, the points are collinear.
Step 3: Detailed Explanation:
The given points are A(1, -3), B(2, -5), and C(-4, 7).
1. Find the slope of line segment AB:
Here, \((x_1, y_1) = (1, -3)\) and \((x_2, y_2) = (2, -5)\).
\[ m_{AB} = \frac{-5 - (-3)}{2 - 1} = \frac{-5 + 3}{1} = \frac{-2}{1} = -2 \]
2. Find the slope of line segment BC:
Here, \((x_1, y_1) = (2, -5)\) and \((x_2, y_2) = (-4, 7)\).
\[ m_{BC} = \frac{7 - (-5)}{-4 - 2} = \frac{7 + 5}{-6} = \frac{12}{-6} = -2 \]
Since the slope of AB is equal to the slope of BC (\(m_{AB} = m_{BC} = -2\)), and they share a common point B, the points A, B, and C lie on the same straight line.
Step 4: Final Answer:
Yes, the points A, B, and C are collinear.
рд╕рд░рд╕реНрд╡рддреА рд╡рд┐рджреНрдпрд╛рд▓рдп, рдХреЛрд▓реНрд╣рд╛рдкреБрд░ рдореЗрдВ рдордирд╛рдП рдЧрдП 'рд╢рд┐рдХреНрд╖рдХ рджрд┐рд╡рд╕' рд╕рдорд╛рд░реЛрд╣ рдХрд╛ 70 рд╕реЗ 80 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡реГрддреНрддрд╛рдВрдд рд▓реЗрдЦрди рдХреАрдЬрд┐рдПред
(рд╡реГрддреНрддрд╛рдВрдд рдореЗрдВ рд╕реНрдерд▓, рдХрд╛рд▓, рдШрдЯрдирд╛ рдХрд╛ рдЙрд▓реНрд▓реЗрдЦ рд╣реЛрдирд╛ рдЕрдирд┐рд╡рд╛рд░реНрдп рд╣реИ)
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдЬрд╛рдирдХрд╛рд░реА рдХреЗ рдЖрдзрд╛рд░ рдкрд░ 50 рд╕реЗ 60 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡рд┐рдЬреНрдЮрд╛рдкрди рддреИрдпрд╛рд░ рдХреАрдЬрд┐рдП :