Step 1: Let the amounts be variables.
Suppose \(\,x\) at 4\% and \((2400-x)\) at 5\%.
Step 2: Write simple interest equations.
Simple interest formula: \(SI = \frac{P \cdot R \cdot T}{100}\).
For 2 years:
Interest on \(x\): \( \frac{x \cdot 4 \cdot 2}{100} = \frac{8x}{100} = \frac{2x}{25}\).
Interest on \((2400-x)\): \( \frac{(2400-x)\cdot 5\cdot 2}{100} = \frac{10(2400-x)}{100} = \frac{2400-x}{10}\).
Step 3: Form the equation.
\[
\frac{2x}{25} + \frac{2400-x}{10} = 220
\]
Multiply through by 50:
\[
4x + 5(2400-x) = 11000
\]
\[
4x + 12000 - 5x = 11000
\]
\[
- x + 12000 = 11000 \quad \Rightarrow \quad x = 1000
\]
So, at 4\%: Rupees 1000; at 5\%: \(2400-1000=1400\).
\[
\boxed{1000,\ 1400}
\]