Step 1: Thin airfoil theory relation.
For a symmetric airfoil (NACA 0012), \(\alpha_{L0}=0\). Thin airfoil theory gives
\[
C_L = 2\pi\,\alpha \quad (\alpha \text{ in radians}).
\]
Step 2: Convert angle to radians and compute.
\[
\alpha = 5^\circ = 5\left(\frac{\pi}{180}\right) \text{ rad} = \frac{\pi}{36} \approx 0.087266.
\]
\[
C_L = 2\pi \times 0.087266 \approx 6.283185 \times 0.087266 \approx 0.5483 \approx 0.55\ \text{(to 2 d.p.)}.
\]
\[
\boxed{C_L \approx 0.55}
\]