Step 1: Rewrite the equation of the ellipse
The given equation of the ellipse is:
\[
9x^2 + 25y^2 = 225.
\]
Solving for \( y \):
\[
y = \pm \frac{5}{3} \sqrt{25 - x^2}.
\]
Step 2: Set up the integral for the area
The area of the region bounded by the ellipse, the X-axis, and the vertical lines \( x = -2 \) and \( x = 2 \) is given by:
\[
\text{Area} = 2 \int_0^2 \frac{5}{3} \sqrt{25 - x^2} \, dx.
\]
Step 3: Use the standard integral formula
The standard integral formula for:
\[
\int \sqrt{a^2 - x^2} \, dx
\]
is given by:
\[
\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C.
\]
Here, \( a = 5 \), so we evaluate:
\[
\int_0^2 \sqrt{25 - x^2} \, dx.
\]
Step 4: Evaluate the integral
Using the formula:
\[
\left[ \frac{x}{2} \sqrt{25 - x^2} + \frac{25}{2} \sin^{-1} \left(\frac{x}{5} \right) \right]_0^2.
\]
At \( x = 2 \):
\[
\frac{2}{2} \sqrt{25 - 2^2} + \frac{25}{2} \sin^{-1} \left(\frac{2}{5} \right)
\]
\[
= \sqrt{21} + \frac{25}{2} \sin^{-1} \left(\frac{2}{5} \right).
\]
At \( x = 0 \):
\[
\frac{0}{2} \sqrt{25 - 0^2} + \frac{25}{2} \sin^{-1} (0) = 0.
\]
So the integral evaluates to:
\[
\sqrt{21} + \frac{25}{2} \sin^{-1} \left(\frac{2}{5} \right).
\]
Step 5: Compute the final area
Multiply by \( \frac{10}{3} \) (accounting for \( \frac{5}{3} \) and the factor of 2 from symmetry):
\[
\text{Area} = \frac{10}{3} \left(\sqrt{21} + \frac{25}{2} \sin^{-1} \left(\frac{2}{5} \right) \right).
\]
Step 6: Final result
The required area is:
\[
\boxed{\frac{10}{3} \sqrt{21} + \frac{125}{6} \sin^{-1} \left(\frac{2}{5} \right)}.
\]