Question:

Using elementary transformations, find the inverse of matrix $\begin{bmatrix}-1&1&2\\ 1&2&3\\ 3&1&1\end{bmatrix}.$

Updated On: Jul 7, 2022
  • $\begin{bmatrix}1&-1&1\\ -8&7&-5\\ 5&-4&3\end{bmatrix}$
  • $\begin{bmatrix}2&-1&1\\ -6&7&-5\\ 5&-4&3\end{bmatrix}$
  • $\begin{bmatrix}2&-1&1\\ -6&4&-5\\ 5&-4&3\end{bmatrix}$
  • $\begin{bmatrix}1&-1&1\\ -6&4&-5\\ 5&-4&3\end{bmatrix}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given, matrix $A =\begin{bmatrix}-1&1&2\\ 1&2&3\\ 3&1&1\end{bmatrix}$, then $A = IA$ $\Rightarrow\begin{bmatrix}-1&1&2\\ 1&2&3\\ 3&1&1\end{bmatrix}=\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}A$ Applying $R_{2}\rightarrow R_{2}+R_{1}, R3\rightarrow R_{3} + 3R_{1}$, we get $\begin{bmatrix}-1&1&2\\ 0&3&5\\ 0&4&7\end{bmatrix}=\begin{bmatrix}1&0&0\\ 0&1&0\\ 3&0&1\end{bmatrix}A$ Applying $R_{1}\rightarrow \left(-1\right)R_{1}$, we get $\begin{bmatrix}1&-1&-2\\ 0&3&5\\ 0&4&7\end{bmatrix}=\begin{bmatrix}-1&0&0\\ 1&1&0\\ 3&0&1\end{bmatrix}A $ Applying $R_{2}\rightarrow R_{2}-R_{3}$, we get $\begin{bmatrix}1&-1&-2\\ 0&-1&-2\\ 0&4&7\end{bmatrix}=\begin{bmatrix}-1&0&0\\ -2&1&-1\\ 3&0&1\end{bmatrix}A$ Applying $R_{1}\rightarrow R_{1} -R_{2}, and R_{3}\rightarrow R_{3} + 4R_{2 }$,we get $\begin{bmatrix}1&0&0\\ 0&-1&-2\\ 0&0&-1\end{bmatrix}=\begin{bmatrix}1&-1&1\\ -2&1&-1\\ -5&4&-3\end{bmatrix}A$ Applying $R_{2}\rightarrow\left(-1\right)R_{2}$, we get $\begin{bmatrix}1&0&0\\ 0&1&2\\ 0&0&-1\end{bmatrix}=\begin{bmatrix}1&-1&1\\ 2&-1&1\\ 5&4&-3\end{bmatrix}A $ Applying $R_{2}\rightarrow R_{2} +2R_{3}$, we get $\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&-1\end{bmatrix}=\begin{bmatrix}1&-1&1\\ -8&7&-5\\ 5&-4&3\end{bmatrix}A$ $A^{-1}=\begin{bmatrix}1&-1&1\\ -8&7&-5\\ 5&-4&3\end{bmatrix}$
Was this answer helpful?
0
0

Concepts Used:

Matrices

Matrix:

A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.

The basic operations that can be performed on matrices are:

  1. Addition of Matrices - The addition of matrices addition can only be possible if the number of rows and columns of both the matrices are the same.
  2. Subtraction of Matrices - Matrices subtraction is also possible only if the number of rows and columns of both the matrices are the same.
  3. Scalar Multiplication - The product of a matrix A with any number 'c' is obtained by multiplying every entry of the matrix A by c, is called scalar multiplication. 
  4. Multiplication of Matrices - Matrices multiplication is defined only if the number of columns in the first matrix and rows in the second matrix are equal. 
  5. Transpose of Matrices - Interchanging of rows and columns is known as the transpose of matrices.