Use suitable identities to find the following products:
(i) (x + 4) (x + 10)
(ii) (x + 8) (x – 10)
(iii) (3x + 4) (3x – 5)
(iv) \((y^ 2 + \frac{3 }{ 2}) (y^ 2 – \frac{3 }{ 2}) \)
(v) (3 – 2x) (3 + 2x)
(i) (x + 4)(x + 10) : By using the identity (x+a) (x+b) = x2 + (a+b)x + ab
(x+4) (x+10) = x2 + (4+10)x + 4 × 10 = x2 + 14x + 40
(ii) (x + 8)(x - 10) : By using the identity (x + a) (x + b) = x2 + (a + b)x + ab
(x+8) (x-10) = x2 + (x - 10)x + (8)(-10) = x2 - 2x - 80
(iii) (3x + 4)(3x - 5): 9(x + \(\frac{4 }{ 3}\))(x - \(\frac{5 }{ 3}\)) By using the identity (x + a) (x + b) = x2 + (a + b)x + ab
9(x + \(\frac{4 }{ 3}\))(x - \(\frac{5 }{ 3}\)) = 9[x2 + (\(\frac{4 }{ 3}\) - \(\frac{4 }{ 3}\))x + (\(\frac{4 }{ 3}\))(-\(\frac{5}{ 3}\))]
= 9[x2 - \(\frac{1 }{ 3}\)x - \(\frac{20 }{ 9}\)] = 9x2 - 3x - 20
(iv) (y2 + \(\frac{3 }{2}\))(y2 - \(\frac{3 }{ 2}\)) : By using the identity (x + y) (x - y) = x2 - y2
(y2 + \(\frac{3 }{ 2}\)) (y2 - \(\frac{3 }{ 2}\)) = (y2)2 - (\(\frac{3 }{ 2}\))2
= y4 - \(\frac{9 }{ 4}\)
(v) (3 - 2x)(3 + 2x) : By using the identity (x + y) (x - y) = x2 - y2
(3 - 2x) (3 + 2x) = (3)2 - (2x)2
= 9 - 4x2
Factorise each of the following:
(i) 8a 3 + b 3 + 12a 2b + 6ab2
(ii) 8a 3 – b 3 – 12a 2b + 6ab2
(iii) 27 – 125a 3 – 135a + 225a 2
(iv) 64a 3 – 27b 3 – 144a 2b + 108ab2
(v) 27p 3 – \(\frac{1}{ 216}\) – \(\frac{9 }{ 2}\) p2 + \(\frac{1 }{4}\) p
Expand each of the following, using suitable identities:
(i) (x + 2y + 4z) 2 (ii) (2x – y + z) 2 (iii) (–2x + 3y + 2z) 2
(iv) (3a – 7b – c) 2 (v) (–2x + 5y – 3z) 2 (vi) [ \(\frac{1 }{ 4}\) a - \(\frac{1 }{ 2}\) b + 1]2
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.
Look up the dictionary entries for the words sympathy, familiarity, comfort, care, and surprise. Use the information given in the dictionary and complete the table.
Noun, Adjective, Adverb, Verb, Meaning:
sympathy
familiarity
comfort
care
surprise