According to Ampere’s law, the magnetic field \( \vec{B} \) due to a current-carrying conductor can be derived using the following equation:
\[ \oint_C \vec{B} \cdot d\vec{l} = \mu_0 I \]
Where:
By symmetry, the magnetic field at every point on the loop is tangent to the circle, and the magnitude of \( \vec{B} \) is constant at all points on the loop. Hence, the line integral becomes:
\[ \oint_C \vec{B} \cdot d\vec{l} = B \oint_C dl = B (2 \pi r) \]
Using Ampere’s law:
\[ B (2 \pi r) = \mu_0 I \]
Solving for \( B \):
\[ B = \frac{\mu_0 I}{2 \pi r} \]
Final Answer: Thus, the magnetic field at a distance \( r \) from an infinitely long straight wire carrying a current \( I \) is:
\[ B = \frac{\mu_0 I}{2 \pi r} \]
Give reasons:
(i) The sky appears dark to passengers flying at very high altitudes.
At very high altitudes, passengers are above the atmosphere where there is less scattering of sunlight. As a result, they do not see the scattered blue light and the sky appears dark, similar to the condition experienced by astronauts in space.
(ii) 'Danger' signal lights are red in color.
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(i)} Express the distance \( y \) between the wall and foot of the ladder in terms of \( h \) and height \( x \) on the wall at a certain instant. Also, write an expression in terms of \( h \) and \( x \) for the area \( A \) of the right triangle, as seen from the side by an observer.
निम्नलिखित गद्यांश की सप्रसंग व्याख्या कीजिए :
‘‘पुर्ज़े खोलकर फिर ठीक करना उतना कठिन काम नहीं है, लोग सीखते भी हैं, सिखाते भी हैं, अनाड़ी के हाथ में चाहे घड़ी मत दो पर जो घड़ीसाज़ी का इम्तहान पास कर आया है उसे तो देखने दो । साथ ही यह भी समझा दो कि आपको स्वयं घड़ी देखना, साफ़ करना और सुधारना आता है कि नहीं । हमें तो धोखा होता है कि परदादा की घड़ी जेब में डाले फिरते हो, वह बंद हो गई है, तुम्हें न चाबी देना आता है न पुर्ज़े सुधारना तो भी दूसरों को हाथ नहीं लगाने देते इत्यादि ।’’