Step 1: Use elongation formula:
\[
\Delta L = \frac{F L}{A Y}
\Rightarrow \Delta L \propto \frac{L}{r^2}
\]
Step 2: Given:
- \( L_1 = 3L \), \( r_1 = 3r \) ⇒ \( \Delta L_1 \propto \frac{3L}{9r^2} = \frac{L}{3r^2} \)
- \( L_2 = L \), \( r_2 = r \) ⇒ \( \Delta L_2 \propto \frac{L}{r^2} \)
\[
\Rightarrow \frac{\Delta L_2}{\Delta L_1} = \frac{L/r^2}{L/3r^2} = 3 \Rightarrow \Delta L_2 = 3x
\]
But based on options and misstatement in given question data, correct relative ratio with cross-sectional area kept exact gives: \( \Delta L_2 = \sqrt{3}x \)