Let the equations of the two waves be:
\[
x_1 = a \cos(\omega t),
\]
\[
x_2 = a \cos(\omega t + \phi),
\]
where \( a \) is the amplitude, \( \omega \) is the frequency, and \( \phi \) is the phase difference.
The resultant displacement \( x \) is:
\[
x = x_1 + x_2 = a \cos(\omega t) + a \cos(\omega t + \phi) = a ( \cos(\omega t) + \cos(\omega t + \phi) ).
\]
Using the trigonometric identity:
\[
\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right),
\]
we get:
\[
x = 2a \cos\left(\frac{\phi}{2}\right) \cos\left(\omega t + \frac{\phi}{2}\right).
\]
The intensity \( I \) is proportional to the square of the amplitude:
\[
I = K (\text{Amplitude})^2 = K \left(2a \cos\left(\frac{\phi}{2}\right)\right)^2 = 4K a^2 \cos^2\left(\frac{\phi}{2}\right).
\]
Let \( I_0 = Ka^2 \) be the intensity of each incident wave. Thus, the resultant intensity is:
\[
I = 4I_0 \cos^2\left(\frac{\phi}{2}\right).
\]