Question:

Two vertices of the parallelogram \( ABCD \) are given as \( A(-1, 2, 1) \) and \( B(1, -2, 5) \). If the equation of the line passing through \( C \) and \( D \) is: \[ \frac{x - 4}{1} = \frac{y + 7}{-2} = \frac{z - 8}{2}, \] find the distance between sides \( AB \) and \( CD \). Hence, find the area of the parallelogram \( ABCD \).

Show Hint

To calculate the distance between skew lines, use the formula involving direction vectors and points on the lines. For area, multiply the distance by the magnitude of one side vector.
Updated On: Jan 29, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

1. Vector representation of \( AB \): The position vectors of \( A \) and \( B \) are: \[ \vec{A} = \langle -1, 2, 1 \rangle, \quad \vec{B} = \langle 1, -2, 5 \rangle. \] The vector \( \overrightarrow{AB} \) is: \[ \overrightarrow{AB} = \vec{B} - \vec{A} = \langle 1 - (-1), -2 - 2, 5 - 1 \rangle = \langle 2, -4, 4 \rangle. \] 2. Direction vector of \( CD \): The direction vector of the line \( CD \) is: \[ \vec{d}_{CD} = \langle 1, -2, 2 \rangle. \] 3. Find a point on \( CD \): From the parametric equation of \( CD \): \[ x = 4 + t, \quad y = -7 - 2t, \quad z = 8 + 2t. \] At \( t = 0 \), a point on \( CD \) is: \[ C_0 = (4, -7, 8). \] 4. Shortest distance between \( AB \) and \( CD \): The formula for the shortest distance between skew lines is: \[ d = \frac{|(\vec{r}_2 - \vec{r}_1) \cdot (\vec{d}_1 \times \vec{d}_2)|}{|\vec{d}_1 \times \vec{d}_2|}. \] Here: - \( \vec{r}_1 = \langle -1, 2, 1 \rangle \) (point on \( AB \)), - \( \vec{r}_2 = \langle 4, -7, 8 \rangle \) (point on \( CD \)), - \( \vec{d}_1 = \overrightarrow{AB} = \langle 2, -4, 4 \rangle \), - \( \vec{d}_2 = \langle 1, -2, 2 \rangle \). Compute \( \vec{r}_2 - \vec{r}_1 \): \[ \vec{r}_2 - \vec{r}_1 = \langle 4 - (-1), -7 - 2, 8 - 1 \rangle = \langle 5, -9, 7 \rangle. \] Compute \( \vec{d}_1 \times \vec{d}_2 \): \[ \vec{d}_1 \times \vec{d}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -4 & 4 \\ 1 & -2 & 2 \end{vmatrix}. \] \[ \vec{d}_1 \times \vec{d}_2 = \hat{i} \begin{vmatrix} -4 & 4 \\ -2 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 4 \\ 1 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -4 \\ 1 & -2 \end{vmatrix}. \] \[ \vec{d}_1 \times \vec{d}_2 = \hat{i}(8 + 8) - \hat{j}(4 - 4) + \hat{k}(-4 + 4). \] \[ \vec{d}_1 \times \vec{d}_2 = \langle 16, 0, 0 \rangle. \] Compute \( (\vec{r}_2 - \vec{r}_1) \cdot (\vec{d}_1 \times \vec{d}_2) \): \[ (\vec{r}_2 - \vec{r}_1) \cdot (\vec{d}_1 \times \vec{d}_2) = \langle 5, -9, 7 \rangle \cdot \langle 16, 0, 0 \rangle = 5 \times 16 + 0 + 0 = 80. \] Compute \( |\vec{d}_1 \times \vec{d}_2| \): \[ |\vec{d}_1 \times \vec{d}_2| = \sqrt{16^2 + 0^2 + 0^2} = \sqrt{256} = 16. \] Shortest distance: \[ d = \frac{|80|}{16} = 5. \] 5. Area of the parallelogram: The area of the parallelogram is given by: \[ \text{Area} = |\overrightarrow{AB}| \times d, \] where: \[ |\overrightarrow{AB}| = \sqrt{2^2 + (-4)^2 + 4^2} = \sqrt{4 + 16 + 16} = \sqrt{36} = 6. \] Substitute: \[ \text{Area} = 6 \times 5 = 30. \] Final Answer: The distance between \( AB \) and \( CD \) is \( \boxed{5} \), and the area of the parallelogram is \( \boxed{30} \).
Was this answer helpful?
0
0

Top Questions on Absolute maxima and Absolute minima

View More Questions