Let $\overrightarrow{OP}$ and $\overrightarrow{OQ}$
represent two vectors $\vec{A}$ and $\vec{B}$ making an angle $\left(\alpha+\beta\right)$.
Using the parallelogram method of vector addition,
Resultant vector, $\vec{R}=\vec{A}+\vec{B}$
$SN$ is normal to $OP$ and $PM$ is normal to $OS$.
From the geometry of the figure,
$OS^2 = ON^2 + SN^2 = (OP + PN)^2 + SN^2$
$=\left(A+Bcos\left(\alpha+\beta\right)\right)^{2}+\left(Bsin\left(\alpha+\beta\right)\right)^{2}$
$R^{2}=A^{2}+B^{2}+2ABcos\left(\alpha+\beta\right)$
In $\Delta OSN$, $SN = OS ,S sin\alpha = Rsin\alpha$
and in $\Delta PSN$,
$SN=PSsin\left(\alpha+\beta\right)=Bsin\left(\alpha+\beta\right)$
$\therefore Rsin\alpha=Bsin\left(\alpha+\beta\right)$ or
$\frac{R}{sin\left(\alpha+\beta\right)}=\frac{B}{sin\,\alpha}\,...\left(i\right)$
Similarly, $PM = Asin\alpha = Bsin\beta$
$\frac{A}{sin\,\beta}=\frac{B}{sin\,\alpha}\,...\left(ii\right)$
Combining (i) and (ii), we get
$\frac{R}{sin\left(\alpha+\beta\right)}=\frac{A}{sin\,\beta}=\frac{B}{sin\,\alpha}\,...\left(iii\right)$
From eqn. (iii), $Rsin\beta=A\,sin\left(\alpha+\beta\right)$