Magnetic field on axial line of a dipole:
\[
B = \frac{\mu_0}{4\pi} \cdot \frac{2M}{r^3}
\]
If two identical dipoles are placed perpendicularly at center and we are at angle bisector (i.e., 45° from each), the vector sum of both dipole fields:
\[
B_{net} = \sqrt{B^2 + B^2} = B\sqrt{2}
\]
Each contributes \( \frac{\mu_0}{4\pi} \cdot \frac{2M}{d^3} \)
\[
B_{net} = \sqrt{2} \cdot \frac{\mu_0}{4\pi} \cdot \frac{2M}{d^3}
= \frac{\mu_0}{4\pi} \cdot \frac{2\sqrt{2}M}{d^3}
\]