Let's define the variables:
Adiabatic Process (Sample 1):
\[ P_1V_1^\gamma = P_fV_f^\gamma \] \[ P_1V^{\frac{3}{2}} = P_f(2V)^{\frac{3}{2}} \] \[ P_1 = P_f \cdot 2^{\frac{3}{2}} \]Isothermal Process (Sample 2):
\[ P_2V_2 = P_fV_f \] \[ P_2V = P_f(2V) \] \[ P_2 = 2P_f \]Ratio of Initial Pressures:
\[ \frac{P_1}{P_2} = \frac{P_f \cdot 2^{\frac{3}{2}}}{2P_f} = \frac{2^{\frac{3}{2}}}{2} = 2^{\frac{1}{2}} = \sqrt{2} \]Therefore, the ratio of initial pressures is \( \sqrt{2} \).
The correct answer is (1) \( \sqrt{2} \).
An amount of ice of mass \( 10^{-3} \) kg and temperature \( -10^\circ C \) is transformed to vapor of temperature \( 110^\circ C \) by applying heat. The total amount of work required for this conversion is,
(Take, specific heat of ice = 2100 J kg\(^{-1}\) K\(^{-1}\),
specific heat of water = 4180 J kg\(^{-1}\) K\(^{-1}\),
specific heat of steam = 1920 J kg\(^{-1}\) K\(^{-1}\),
Latent heat of ice = \( 3.35 \times 10^5 \) J kg\(^{-1}\),
Latent heat of steam = \( 2.25 \times 10^6 \) J kg\(^{-1}\))