Step 1: Writing the resultant standing wave.
\[
Y = Y_1 + Y_2 = \sin 2\pi\left(\frac{t}{4}-\frac{x}{4}\right)+\sin 2\pi\left(\frac{t}{4}+\frac{x}{4}\right)
\]
Step 2: Using trigonometric identity.
\[
\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}
\]
\[
Y = 2\sin\left(\frac{\pi t}{2}\right)\cos\left(\frac{\pi x}{2}\right)
\]
Step 3: Expression for amplitude.
Amplitude at position $x$ is:
\[
A(x) = 2\left|\cos\left(\frac{\pi x}{2}\right)\right|
\]
Step 4: Substituting $x=0.5\,\text{m$.}
\[
A = 2\cos\left(\frac{\pi}{4}\right)=2\cdot\frac{1}{\sqrt{2}}=\sqrt{2}
\]
Step 5: Conclusion.
Amplitude of the particle is $\sqrt{2}\,\text{m}$.