Step 1: Work Done in Moving Charges The work done in moving two point charges from an initial separation \(r_1\) to a final separation \(r_2\) is given by the formula: \[ W = k \cdot \frac{q_1 q_2}{r_2} - k \cdot \frac{q_1 q_2}{r_1} \] where:
- \( k = 9 \times 10^9 \, N \cdot m^2/C^2 \) (Coulomb’s constant),
- \( q_1 = 10 \times 10^{-6} C \),
- \( q_2 = 12 \times 10^{-6} C \),
- \( r_1 = 12 \, cm = 0.12 \, m \),
- \( r_2 = 4 \, cm = 0.04 \, m \).
Step 2: Substituting Values \[ W = 9 \times 10^9 \times \left( \frac{10 \times 10^{-6} \times 12 \times 10^{-6}}{0.04} - \frac{10 \times 10^{-6} \times 12 \times 10^{-6}}{0.12} \right) \] \[ = 9 \times 10^9 \times 120 \times 10^{-12} \times \left( \frac{1}{0.04} - \frac{1}{0.12} \right) \] \[ = 9 \times 10^9 \times 120 \times 10^{-12} \times \left( 25 - 8.33 \right) \] \[ = 9 \times 10^9 \times 120 \times 10^{-12} \times 16.67 \] \[ = 18 J \] Thus, the correct answer is \( \mathbf{(2)} \ 18 J \).

Observe the following data given in the table. (\(K_H\) = Henry's law constant)
| Gas | CO₂ | Ar | HCHO | CH₄ |
|---|---|---|---|---|
| \(K_H\) (k bar at 298 K) | 1.67 | 40.3 | \(1.83 \times 10^{-5}\) | 0.413 |
The correct order of their solubility in water is
For a first order decomposition of a certain reaction, rate constant is given by the equation
\(\log k(s⁻¹) = 7.14 - \frac{1 \times 10^4 K}{T}\). The activation energy of the reaction (in kJ mol⁻¹) is (\(R = 8.3 J K⁻¹ mol⁻¹\))
Note: The provided value for R is 8.3. We will use the more precise value R=8.314 J K⁻¹ mol⁻¹ for accuracy, as is standard.