List-I | List-II | ||
I | Probability of (X2 ≥ Y2) is | P | \(\frac{3}{8}\) |
II | Probability of (X2 > Y2) is | Q | \(\frac{11}{16}\) |
III | Probability of (X3 = Y3) is | R | \(\frac{5}{16}\) |
IV | Probability of (X3 > Y3) is | S | \(\frac{355}{864}\) |
T | \(\frac{77}{432}\) |
(I) → (Q); (II) → (R); (III) → (T); (IV) → (S)
(I) → (Q); (II) → (R); (III) → (T); (IV) → (T)
(I) → (P); (II) → (R); (III) → (Q); (IV) → (S)
(I) → (P); (II) → (R); (III) → (Q); (IV) → (T)
Let \( A_1 \); \( P_1 \) won the round
\(\Rightarrow P(A_1) = \frac{6C2}{6^2} = \frac{6 \times 5}{6 \times 6 \times 6} = \frac{5}{12} \)
Let \( A_2 \); \( P_2 \) won the round \(\Rightarrow P(A_2) = \frac{5}{12} \)
Let \( D \); round ends in draw \(\Rightarrow P(D) = \frac{6}{6^2} = \frac{1}{6} \)
(i) \( P(X_2 \geq Y_2) = P(A_1 \cap A_1) + 2P(A_1 \cap A_1) + P(D \cap D) + 2P(A_1 \cap D) \) \[ P(X_2 \geq Y_2) = \frac{5}{12} \times \frac{5}{12} + \frac{5}{12} \times \frac{1}{6} + \frac{5}{12} \times \frac{1}{6} + \frac{1}{6} = \frac{11}{16} \] \(\Rightarrow (1) \rightarrow (Q)\) \textbf{(ii)} \( P(X_2 \geq Y_2) = P(A_1 \cap A_1) + 2P(A_1 \cap A_1) \) \[ P(X_2 \geq Y_2) = \frac{5 \times 5}{12 \times 12} + 2 \times \frac{25}{144} + \frac{45}{144} + \frac{36}{144} \] \(\Rightarrow (ii) \rightarrow (R)\) \textbf{(iii)} \( P(X_3 \geq Y_3) = 3P(A_1 \cap A_1) + P(D \cap D) \) \[ P(X_3 \geq Y_3) = 6 \times \frac{5}{12} \times \frac{5}{12} \times \frac{1}{6} \times 6 = \frac{25}{144} + \frac{75}{72} + \frac{432}{432} \] \(\Rightarrow (iii) \rightarrow (T)\) \textbf{(iv)} \( P(X_3 \geq Y_3) = P(A_1 \cap A_1) + P(A_1 \cap A_1) + 3P(A_1 \cap A_1) + 3P(D \cap D) \) \[ P(X_3 \geq Y_3) = \frac{5}{12} \times \frac{5}{12} + 3 \times P(A_1 \cap D) + 3 \times P(A_1 \cap D) + P(D \cap D) \] \(\Rightarrow IV \rightarrow (S)\)
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____