| List-I | List-II | ||
| I | Probability of (X2 ≥ Y2) is | P | \(\frac{3}{8}\) |
| II | Probability of (X2 > Y2) is | Q | \(\frac{11}{16}\) |
| III | Probability of (X3 = Y3) is | R | \(\frac{5}{16}\) |
| IV | Probability of (X3 > Y3) is | S | \(\frac{355}{864}\) |
| T | \(\frac{77}{432}\) | ||
(I) → (Q); (II) → (R); (III) → (T); (IV) → (S)
(I) → (Q); (II) → (R); (III) → (T); (IV) → (T)
(I) → (P); (II) → (R); (III) → (Q); (IV) → (S)
(I) → (P); (II) → (R); (III) → (Q); (IV) → (T)
Let \( A_1 \); \( P_1 \) won the round
\(\Rightarrow P(A_1) = \frac{6C2}{6^2} = \frac{6 \times 5}{6 \times 6 \times 6} = \frac{5}{12} \)
Let \( A_2 \); \( P_2 \) won the round \(\Rightarrow P(A_2) = \frac{5}{12} \)
Let \( D \); round ends in draw \(\Rightarrow P(D) = \frac{6}{6^2} = \frac{1}{6} \)
(i) \( P(X_2 \geq Y_2) = P(A_1 \cap A_1) + 2P(A_1 \cap A_1) + P(D \cap D) + 2P(A_1 \cap D) \) \[ P(X_2 \geq Y_2) = \frac{5}{12} \times \frac{5}{12} + \frac{5}{12} \times \frac{1}{6} + \frac{5}{12} \times \frac{1}{6} + \frac{1}{6} = \frac{11}{16} \] \(\Rightarrow (1) \rightarrow (Q)\) \textbf{(ii)} \( P(X_2 \geq Y_2) = P(A_1 \cap A_1) + 2P(A_1 \cap A_1) \) \[ P(X_2 \geq Y_2) = \frac{5 \times 5}{12 \times 12} + 2 \times \frac{25}{144} + \frac{45}{144} + \frac{36}{144} \] \(\Rightarrow (ii) \rightarrow (R)\) \textbf{(iii)} \( P(X_3 \geq Y_3) = 3P(A_1 \cap A_1) + P(D \cap D) \) \[ P(X_3 \geq Y_3) = 6 \times \frac{5}{12} \times \frac{5}{12} \times \frac{1}{6} \times 6 = \frac{25}{144} + \frac{75}{72} + \frac{432}{432} \] \(\Rightarrow (iii) \rightarrow (T)\) \textbf{(iv)} \( P(X_3 \geq Y_3) = P(A_1 \cap A_1) + P(A_1 \cap A_1) + 3P(A_1 \cap A_1) + 3P(D \cap D) \) \[ P(X_3 \geq Y_3) = \frac{5}{12} \times \frac{5}{12} + 3 \times P(A_1 \cap D) + 3 \times P(A_1 \cap D) + P(D \cap D) \] \(\Rightarrow IV \rightarrow (S)\)
If probability of happening of an event is 57%, then probability of non-happening of the event is
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?