Step 1: Use the first-order decay law for \( A \).
The decay of \( A \) is governed by the overall rate constant \( k \):
\[
\ln \left( \frac{C_A}{C_{A0}} \right) = -kt.
\]
Here:
- \( C_A = \frac{C_{A0}}{2} = \frac{1}{2} \, \text{kmol} \, \text{m}^{-3} \),
- \( C_{A0} = 1 \, \text{kmol} \, \text{m}^{-3} \),
- \( t = 2 \, \text{hours} \).
Substitute into the equation:
\[
\ln \left( \frac{\frac{1}{2}}{1} \right) = -k \cdot 2.
\]
Simplify:
\[
\ln \left( \frac{1}{2} \right) = -2k \quad \Rightarrow \quad k = \frac{\ln(2)}{2} \approx 0.3466 \, \text{h}^{-1}.
\]
Step 2: Relate \( k_1 \) and \( k_2 \).
The overall rate constant is the sum of the individual rate constants for parallel reactions:
\[
k = k_1 + k_2.
\]
Thus:
\[
k_1 + k_2 = 0.3466.
\]
Step 3: Use the concentration ratio of \( B \) and \( C \).
The concentration of \( B \) is twice that of \( C \):
\[
C_B = 2C_C.
\]
The concentrations are related to the rate constants:
\[
\frac{C_B}{C_C} = \frac{k_1}{k_2}.
\]
Substitute \( \frac{C_B}{C_C} = 2 \):
\[
\frac{k_1}{k_2} = 2 \quad \Rightarrow \quad k_1 = 2k_2.
\]
Step 4: Solve for \( k_1 \) and \( k_2 \).
Substitute \( k_1 = 2k_2 \) into \( k_1 + k_2 = 0.3466 \):
\[
2k_2 + k_2 = 0.3466 \quad \Rightarrow \quad 3k_2 = 0.3466 \quad \Rightarrow \quad k_2 = 0.1155 \, \text{h}^{-1}.
\]
Then:
\[
k_1 = 2k_2 = 2 \cdot 0.1155 = 0.231 \, \text{h}^{-1}.
\]
Step 5: Conclusion.
The rate constants are \( k_1 = 0.23 \, \text{h}^{-1} \) and \( k_2 = 0.12 \, \text{h}^{-1} \).