The frequency \( f \) of an open organ pipe is given by:
\[f = \frac{nv}{2L}\]
The difference in frequency \( \Delta f \) for the two pipes is:
\[\Delta f = \frac{6v}{2 \times 0.6} - \frac{5v}{2 \times 0.9}\]
Substitute \( v = 333 \, \text{m/s} \):
\[\Delta f = \frac{6 \times 333}{2 \times 0.6} - \frac{5 \times 333}{2 \times 0.9}\]
\[\Delta f = 740 \, \text{Hz}\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: