Step 1: Write the formula for fundamental frequency of an open pipe.
For an open organ pipe,
\[
n = \frac{v}{2L}
\]
where \( v \) is the velocity of sound and \( L \) is the length of the pipe.
Step 2: Express lengths of individual pipes.
\[
L_1 = \frac{v}{2n_1}, \quad L_2 = \frac{v}{2n_2}
\]
Step 3: Find the total length of the combined pipe.
\[
L = L_1 + L_2 = \frac{v}{2}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)
\]
Step 4: Calculate the new fundamental frequency.
\[
n = \frac{v}{2L} = \frac{v}{2 \cdot \frac{v}{2}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}
\]
\[
= \frac{1}{\frac{1}{n_1} + \frac{1}{n_2}} = \frac{n_1 n_2}{n_1 + n_2}
\]
Step 5: Conclusion.
The fundamental frequency of the new pipe is \( \dfrac{n_1 n_2}{n_1 + n_2} \).