
Using Snell’s law for the critical angle \( \theta_c \): \[ n_A \sin \theta_c = n_B \sin 90^\circ = 1 \] Hence, \[ \sin \theta_c = \frac{v_A}{v_B} = \frac{2 \times 10^8}{2.5 \times 10^8} = \frac{4}{5} \] Thus, the critical angle is: \[ \theta_c = \sin^{-1} \left(\frac{4}{5} \right) \] Thus, the correct answer is: \[ \text{(B) } \sin^{-1} \left(\frac{4}{5} \right) \]
A hemispherical vessel is completely filled with a liquid of refractive index \( \mu \). A small coin is kept at the lowest point \( O \) of the vessel as shown in the figure. The minimum value of the refractive index of the liquid so that a person can see the coin from point \( E \) (at the level of the vessel) is:
मेले में बिताया एक दिन - लगभग 100 शब्दों में रचनात्मक लेख लिखिए