Step 1: Acoustic impedance concept.
For a P-wave striking normally, the boundary behavior depends only on acoustic impedances \(Z_i=\rho_iV_i\) (units \(\text{kg m}^{-2}\text{s}^{-1}\)). Larger contrast \(\Rightarrow\) stronger reflection.
Step 2: Compute impedances with units.
\[
Z_1=2000\cdot 1800=3.6\times 10^6\ \text{kg m}^{-2}\text{s}^{-1},
\quad
Z_2=3000\cdot 2100=6.3\times 10^6\ \text{kg m}^{-2}\text{s}^{-1}.
\]
Step 3: Reflection coefficient at normal incidence.
\[
R=\frac{Z_2-Z_1}{Z_2+Z_1}
=\frac{6.3-3.6}{6.3+3.6}
=\frac{2.7}{9.9}=0.272727\ldots
\Rightarrow \boxed{0.273}.
\]
Step 4: Polarity and energy (optional insight).
\(R>0\) because the wave goes from lower to higher impedance; the reflected polarity is non-inverted at normal incidence. Fraction of energy reflected \(E_R=R^2\approx 0.074\) (about \(7.4%\)), remainder transmitted.
Final Answer:\ \(\boxed{0.273}\)