Step 1: Magnetic Field Due to a Long Current-Carrying Wire
The magnetic field at a perpendicular distance \( d \) from an infinitely long straight conductor carrying current \( I \) is given by Ampere’s Law:
\[
B = \frac{\mu_0 I}{2\pi d}
\]
where \( \mu_0 \) is the permeability of free space.
Step 2: Magnetic Fields at Point P Due to Both Wires
- The first wire (along the X-axis) carries current 8 A and contributes a magnetic field:
\[
B_1 = \frac{\mu_0 (8)}{2\pi d}
\]
- The second wire (along the Y-axis) carries current 6 A and contributes a magnetic field:
\[
B_2 = \frac{\mu_0 (6)}{2\pi d}
\]
Step 3: Resultant Magnetic Field
Since the two magnetic fields are perpendicular to each other, the net magnetic field at P is:
\[
B_{\text{net}} = \sqrt{B_1^2 + B_2^2}
\]
Substituting the values:
\[
B_{\text{net}} = \sqrt{\left(\frac{\mu_0 (8)}{2\pi d}\right)^2 + \left(\frac{\mu_0 (6)}{2\pi d}\right)^2}
\]
\[
B_{\text{net}} = \frac{\mu_0}{2\pi d} \sqrt{8^2 + 6^2} = \frac{\mu_0}{2\pi d} \sqrt{64 + 36}
\]
\[
B_{\text{net}} = \frac{\mu_0}{2\pi d} \times \sqrt{100} = \frac{\mu_0}{2\pi d} \times 10
\]
\[
B_{\text{net}} = \frac{10 \mu_0}{2\pi d} = \frac{5 \mu_0}{\pi d}
\]
Step 4: Conclusion
Thus, the correct answer is \( \frac{5 \mu_0}{\pi d} \).