Raju | |||
Aditi | Movie | Concert | |
Movie | 2,1 | 0,0 | |
Concert | 0,0 | 1,2 |
Raju | |||
Aditi | Movie | Concert | |
Movie | 2,1 | 0,0 | |
Concert | 0,0 | 1,2 |
\(E_{Aditi}(Movie) = q \times 2 + (1-q) \times 0 = 2q\)
From "Concert":\(E_{Aditi}(Concert) = q \times 0 + (1-q) \times 1 = 1-q\)
For equilibrium, set equations equal:\(2q = 1-q \Rightarrow 3q = 1 \Rightarrow q = \frac{1}{3}\)
\(E_{Raju}(Movie) = p \times 1 + (1-p) \times 0 = p\)
From "Concert":\(E_{Raju}(Concert) = p \times 0 + (1-p) \times 2 = 2 - 2p\)
Equilibrium when:\(p = 2 - 2p \Rightarrow 3p = 2 \Rightarrow p = \frac{2}{3}\)
If A is any event associated with sample space and if E1, E2, E3 are mutually exclusive and exhaustive events. Then which of the following are true?
(A) \(P(A) = P(E_1)P(E_1|A) + P(E_2)P(E_2|A) + P(E_3)P(E_3|A)\)
(B) \(P(A) = P(A|E_1)P(E_1) + P(A|E_2)P(E_2) + P(A|E_3)P(E_3)\)
(C) \(P(E_i|A) = \frac{P(A|E_i)P(E_i)}{\sum_{j=1}^{3} P(A|E_j)P(E_j)}, \; i=1,2,3\)
(D) \(P(A|E_i) = \frac{P(E_i|A)P(E_i)}{\sum_{j=1}^{3} P(E_i|A)P(E_j)}, \; i=1,2,3\)
Choose the correct answer from the options given below:
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
In the following figure, four overlapping shapes (rectangle, triangle, circle, and hexagon) are given. The sum of the numbers which belong to only two overlapping shapes is ________