Question:

Two discs of moments of inertia $I_1$ and $I_2$ about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed $\omega_1$ and $\omega_2$ are brought into contact face to face with their axes of rotation coinciding with each other. What is the loss in kinetic energy of the system in the process?

Updated On: Jul 7, 2022
  • $\frac{I_{1}I_{2}\left(\omega_{1} -\omega_{2}\right)^{2}}{2\left(I_{1}-I_{2}\right)}$
  • $\frac{I_{1}I_{2}\left(\omega_{1} -\omega_{2}\right)^{2}}{\left(I_{1}+I_{2}\right)}$
  • $\frac{I_{1}I_{2}\left(\omega_{1} +\omega_{2}\right)^{2}}{\left(I_{1}-I_{2}\right)}$
  • $\frac{I_{1}I_{2}\left(\omega_{1} +\omega_{2}\right)^{2}}{2\left(I_{1}-I_{2}\right)}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let the moment of inertia of disc $I$ be $I_1$ and the angular speed of disc $I$ be $\omega_1$. Let the moment of inertia of disc $II$ be $I_2$ and the angular speed of disc $II$ be $\omega_2$. Angular momentum of disc $I$ be $L _1 = I_1 \omega_1$ and angular momentum of disc $II$ be $L_2= I_2\omega_2$. $\therefore$ The initial angular momentum of two discs is given by $L_i = I_1 \omega_1 + I_2 \omega_2$ When two discs are brought into contact face to face (one on top of other) and their axis of rotation coincide, the moment of inertia $I$ of the system is equal to the sum of their individual moments of inertia i.e., $I = I_1 + I_2$. Let $\omega$ be the final angular speed of the system. $\therefore$ The final angular momentum of the system is given by $L_f = (I_1 +I_2)\omega$ According to law of conservation of angular momentum, $L_i =L_f $ $ I_1 \omega _1 + I_2 \omega_2 = (I_1+I_2)\omega$ $ \omega = \frac{I_1 \omega _1 + I_2 \omega_2 }{I_1 +I_2 } \quad ...(i)$ Kinetic energy of disc $I$ is given by $K_1 = \frac{1}{2} I_1\omega_1^2$ Kinetic energy of disc $II$ is given by $K_2 = \frac{1}{2} I_2 \omega_2$ $\therefore$ Initial kinetic energy of two discs is $K_i = \frac{1}{2} I_1\omega_1^2 + \frac{1}{2} I_2 \omega_2^2$ Final kinetic energy of the system is $K_f =\frac{1}{2} (I_1 +I_2)\omega^2 $ $=\frac{1}{2}(I_1+I_2) (\frac{I_1\omega_1 + I_2\omega_2}{I_1+I_2})$ (Using $(i)$) $=\frac{1}{2} \frac{(I_1\omega_1 +I_2 \omega_2)^2}{(I_1 +I_2)}$ Loss in kinetic energy of the system $\Delta K = K_{i} -K_{f} = \frac{1}{2}\left(I_{1}\omega_{1}^{2} +I_{2}\omega_{2}^{2}\right) - \frac{\left(I_{1}\omega_{1} +I_{2}\omega_{2}\right)^{2}}{2\left(I_{1}+I_{2}\right)}$ $ = \frac{1}{2}I_{1}\omega_{1}^{2} +\frac{1}{2}I_{2}\omega_{2}^{2} - \frac{1}{2}\frac{ I_{1}^{2}\omega_{1}^{2}}{\left(I_{1}+I_{2}\right)} - \frac{1}{2}\frac{I_{2}^{2}\omega_{2}^{2}}{\left(I_{1}+I_{2}\right)} -\frac{1}{2}\frac{2I_{1}I_{2}\omega_{1}\omega_{2}}{\left(I_{1}+I_{2}\right)}$ $ = \frac{1}{\left(I_{1}+I_{2}\right)}[\frac{1}{2}I_{1}^{2}\omega_{1}^{2} +\frac{1}{2}I_{1}I_{2}\omega_{1}^{2} $ $+ \frac{1}{2}I_{1}I_{2}\omega_{2}^{2}+\frac{1}{2}I_{2}^{2}\omega_{2}^{2}-\frac{1}{2}I_{1}^{2}\omega_{1}^{2}$ $ -\frac{1}{2}I_{2}^{2}\omega_{2}^{2} - I_{1}I_{2}\omega _{1}\omega_{2}] $ $= \frac{I_{1}I_{2}}{2\left(I_{1}+I_{2}\right)}\left(\omega_{1}^{2}+\omega_{2}^{2} -\omega_{1}\omega_{2}\right)$ $ = \frac{I_{1}I_{2}\left(\omega_{1}-\omega_{2}\right)^{2}}{2\left(I_{1}+I_{2}\right)}$
Was this answer helpful?
0
0

Top Questions on rotational motion

View More Questions

Concepts Used:

Rotational Motion

Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.

Rotational Motion Examples:

The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.

Other examples:

  • Moving by Bus
  • Sailing of Boat
  • Dog walking
  • A person shaking the plant.
  • A stone falls straight at the surface of the earth.
  • Movement of a coin over a carrom board 

Types of Motion involving Rotation:

  1. Rotation about a fixed axis (Pure rotation)
  2. Rotation about an axis of rotation (Combined translational and rotational motion)
  3. Rotation about an axis in the rotation (rotating axis)