Concept:
The moment of inertia of a uniform solid disc about its central axis is:
\[
I = \frac{1}{2}MR^2
\]
For a disc of density \(\rho\), radius \(R\), and thickness \(t\):
\[
M = \rho \times (\text{Volume}) = \rho \pi R^2 t
\]
Hence,
\[
I = \frac{1}{2}\rho \pi R^4 t
\]
Thus, for discs of the same material:
\[
I \propto R^4 t
\]
Step 1: Use the given condition of equal moments of inertia.
\[
I_1 = I_2
\Rightarrow R_1^4 t_1 = R_2^4 t_2
\]
Step 2: Substitute the given radius ratio.
\[
\frac{R_1}{R_2} = \frac{1}{2}
\Rightarrow \left(\frac{R_1}{R_2}\right)^4 = \frac{1}{16}
\]
\[
\frac{1}{16} \cdot t_1 = t_2
\]
Step 3: Find the required ratio.
\[
\frac{t_1}{t_2} = 16
\]
\[
\boxed{\dfrac{t_1}{t_2} = 16}
\]