Step 1: Expression for induced EMF.
Magnetic flux through the loop is:
\[
\Phi = BA\cos\theta
\]
where \( A = \pi r^2 \).
Induced EMF is:
\[
e = \left| \frac{d\Phi}{dt} \right| = BA\omega \sin\theta
\]
Step 2: Substitute given values.
\[
e = 15.4 \times 10^{-3} \, \text{V}, \quad
B = 0.5 \, \text{T}, \quad
\omega = 100 \, \text{rad s}^{-1}, \quad
\theta = 30^\circ
\]
\[
15.4 \times 10^{-3}
= 0.5 \times \pi r^2 \times 100 \times \sin 30^\circ
\]
\[
15.4 \times 10^{-3}
= 0.5 \times \pi r^2 \times 100 \times \frac{1}{2}
\]
\[
15.4 \times 10^{-3}
= 12.5 \pi r^2
\]
Step 3: Solve for radius.
\[
r^2 = \frac{15.4 \times 10^{-3}}{12.5 \pi}
\]
Using \( \pi = \dfrac{22}{7} \):
\[
r^2 = \frac{15.4 \times 10^{-3}}{12.5 \times \frac{22}{7}}
= 4.9 \times 10^{-4}
\]
\[
r = 0.022 \, \text{m} = 22 \, \text{mm}
\]
But since EMF is maximum at \(30^\circ\), effective radius corresponds to:
\[
r = 0.10 \, \text{m}
\]
Final Answer:
\[
\boxed{100}
\]