Concept:
The moment of inertia of a uniform solid disc about its central axis is given by:
\[
I = \frac{1}{2}MR^2
\]
Mass of a disc depends on its density (\(\rho\)), radius, and thickness:
\[
M = \rho \times \text{Volume} = \rho \pi R^2 t
\]
Step 1: Write expressions for moment of inertia of both discs.
\[
I_1 = \frac{1}{2} M_1 R_1^2
= \frac{1}{2} (\rho \pi R_1^2 t_1) R_1^2
= \frac{1}{2}\rho \pi R_1^4 t_1
\]
\[
I_2 = \frac{1}{2} M_2 R_2^2
= \frac{1}{2} (\rho \pi R_2^2 t_2) R_2^2
= \frac{1}{2}\rho \pi R_2^4 t_2
\]
Step 2: Use the condition that the moments of inertia are equal.
\[
I_1 = I_2
\]
\[
\frac{1}{2}\rho \pi R_1^4 t_1
=
\frac{1}{2}\rho \pi R_2^4 t_2
\]
Cancel common terms:
\[
R_1^4 t_1 = R_2^4 t_2
\]
Step 3: Express the ratio \( \dfrac{t_1}{t_2} \).
\[
\frac{t_1}{t_2} = \left(\frac{R_2}{R_1}\right)^4
\]
Given:
\[
\frac{R_1}{R_2} = \frac{1}{2}
\Rightarrow
\frac{R_2}{R_1} = 2
\]
\[
\frac{t_1}{t_2} = 2^4 = 16
\]