Step 1: Understanding the Question:
We have two rotating discs that are brought into contact. Due to frictional forces between them, they eventually rotate with a common angular velocity. Since this is an inelastic collision, some kinetic energy will be lost. We need to calculate this loss.
Step 2: Key Formula or Approach:
1. Conservation of Angular Momentum: Since there is no external torque on the two-disc system, the total angular momentum before and after contact is conserved.
2. Kinetic Energy of Rotation: The rotational kinetic energy of a body is given by \( K = \frac{1}{2}I\omega^2 \).
3. Loss in KE: \( \Delta K = K_{\text{initial}} - K_{\text{final}} \).
Step 3: Detailed Explanation:
Initial State:
Initial angular momentum of the system, \( L_i = I_1\omega_1 + I_2\omega_2 \).
Initial kinetic energy of the system, \( K_i = \frac{1}{2}I_1\omega_1^2 + \frac{1}{2}I_2\omega_2^2 \).
Final State:
When the discs are brought into contact, they rotate together with a common final angular velocity, \( \omega_f \).
The total moment of inertia of the combined system is \( I_f = I_1 + I_2 \).
Final angular momentum of the system, \( L_f = (I_1 + I_2)\omega_f \).
Applying Conservation of Angular Momentum:
\( L_i = L_f \)
\( I_1\omega_1 + I_2\omega_2 = (I_1 + I_2)\omega_f \)
Solving for the final angular velocity:
\[ \omega_f = \frac{I_1\omega_1 + I_2\omega_2}{I_1 + I_2} \]
Calculating Final Kinetic Energy:
\( K_f = \frac{1}{2}I_f\omega_f^2 = \frac{1}{2}(I_1 + I_2)\left(\frac{I_1\omega_1 + I_2\omega_2}{I_1 + I_2}\right)^2 \)
\[ K_f = \frac{(I_1\omega_1 + I_2\omega_2)^2}{2(I_1 + I_2)} \]
Calculating Loss in Kinetic Energy:
\( \Delta K = K_i - K_f \)
\( \Delta K = \left(\frac{1}{2}I_1\omega_1^2 + \frac{1}{2}I_2\omega_2^2\right) - \frac{(I_1\omega_1 + I_2\omega_2)^2}{2(I_1 + I_2)} \)
Taking a common denominator of \( 2(I_1 + I_2) \):
\( \Delta K = \frac{(I_1\omega_1^2 + I_2\omega_2^2)(I_1 + I_2) - (I_1\omega_1 + I_2\omega_2)^2}{2(I_1 + I_2)} \)
Expanding the numerator:
Numerator = \( (I_1^2\omega_1^2 + I_1I_2\omega_1^2 + I_1I_2\omega_2^2 + I_2^2\omega_2^2) - (I_1^2\omega_1^2 + I_2^2\omega_2^2 + 2I_1I_2\omega_1\omega_2) \)
Numerator = \( I_1I_2\omega_1^2 + I_1I_2\omega_2^2 - 2I_1I_2\omega_1\omega_2 \)
Numerator = \( I_1I_2(\omega_1^2 + \omega_2^2 - 2\omega_1\omega_2) \)
Numerator = \( I_1I_2(\omega_1 - \omega_2)^2 \)
Substituting back into the expression for \( \Delta K \):
\[ \Delta K = \frac{I_1I_2(\omega_1 - \omega_2)^2}{2(I_1 + I_2)} \]
Step 4: Final Answer:
The loss in kinetic energy is \( \frac{I_1I_2}{2(I_1 + I_2)}(\omega_1 - \omega_2)^2 \).