Angle between two curves is given by:
\[
\begin{align}
\tan \alpha = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|,\quad \text{where } m_1 = \frac{dy_1}{dx},\ m_2 = \frac{dy_2}{dx}
\]
\[
\begin{align}
\frac{dy}{dx} \text{ for } y = a^x = a^x \log a
\frac{dy}{dx} \text{ for } y = b^x = b^x \log b
\]
At point of intersection \( a^x = b^x \Rightarrow x = 0 \text{ if } a \ne b \), then:
\[
\begin{align}
\tan \alpha = \left| \frac{\log a - \log b}{1 + \log a \log b} \right|
\]