Potential energy between the two $+q$ charges: $$U_1 = \frac{1}{4\pi\epsilon_0} \frac{q \cdot q}{2a} = \frac{q^2}{8\pi\epsilon_0 a}$$ Potential energy between the first $+q$ charge and the $-2q$ charge: $$U_2 = \frac{1}{4\pi\epsilon_0} \frac{q \cdot (-2q)}{a} = -\frac{2q^2}{4\pi\epsilon_0 a} = -\frac{4q^2}{8\pi\epsilon_0 a}$$ Potential energy between the second $+q$ charge and the $-2q$ charge: $$U_3 = \frac{1}{4\pi\epsilon_0} \frac{q \cdot (-2q)}{a} = -\frac{2q^2}{4\pi\epsilon_0 a} = -\frac{4q^2}{8\pi\epsilon_0 a}$$
The total potential energy $U$ is the sum of $U_1$, $U_2$, and $U_3$: $$U = U_1 + U_2 + U_3$$ $$U = \frac{q^2}{8\pi\epsilon_0 a} - \frac{4q^2}{8\pi\epsilon_0 a} - \frac{4q^2}{8\pi\epsilon_0 a}$$ $$U = \frac{(1 - 4 - 4)q^2}{8\pi\epsilon_0 a}$$ $$U = -\frac{7q^2}{8\pi\epsilon_0 a}$$ Therefore, the potential energy of the system is $-\frac{7q^2}{8\pi\epsilon_0 a}$.
Simar, Tanvi, and Umara were partners in a firm sharing profits and losses in the ratio of 5 : 6 : 9. On 31st March, 2024, their Balance Sheet was as follows:
Liabilities | Amount (₹) | Assets | Amount (₹) |
Capitals: | Fixed Assets | 25,00,000 | |
Simar | 13,00,000 | Stock | 10,00,000 |
Tanvi | 12,00,000 | Debtors | 8,00,000 |
Umara | 14,00,000 | Cash | 7,00,000 |
General Reserve | 7,00,000 | Profit and Loss A/c | 2,00,000 |
Trade Payables | 6,00,000 | ||
Total | 52,00,000 | Total | 52,00,000 |
Umara died on 30th June, 2024. The partnership deed provided for the following on the death of a partner:
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is: