S = 52 cards
⇒ 52 Two cards are drawn without replacement.
A = {26 black cards}
⇒ n(A) = 26
P(A) = \(\frac {26}{52}\)
And P(B) i.e., the probability that the second card is black known that the first card is black = \(\frac {25}{51}\)
P(A and B) = P(A).P(B)
= \(\frac {26}{52} ×\frac {25}{51}\)
= \(\frac {1}{2} ×\frac {25}{51}\)
= \(\frac {25}{102}\)
Rupal, Shanu and Trisha were partners in a firm sharing profits and losses in the ratio of 4:3:1. Their Balance Sheet as at 31st March, 2024 was as follows:
(i) Trisha's share of profit was entirely taken by Shanu.
(ii) Fixed assets were found to be undervalued by Rs 2,40,000.
(iii) Stock was revalued at Rs 2,00,000.
(iv) Goodwill of the firm was valued at Rs 8,00,000 on Trisha's retirement.
(v) The total capital of the new firm was fixed at Rs 16,00,000 which was adjusted according to the new profit sharing ratio of the partners. For this necessary cash was paid off or brought in by the partners as the case may be.
Prepare Revaluation Account and Partners' Capital Accounts.
On the basis of the following hypothetical data, calculate the percentage change in Real Gross Domestic Product (GDP) in the year 2022 – 23, using 2020 – 21 as the base year.
Year | Nominal GDP | Nominal GDP (Adjusted to Base Year Price) |
2020–21 | 3,000 | 5,000 |
2022–23 | 4,000 | 6,000 |
In accordance with the multiplication rule of probability, the probability of happening of both the events A and B is equal to the product of the probability of B occurring and the conditional probability that event A happens given that event B occurs.
Let's assume, If A and B are dependent events, then the probability of both events occurring at the same time is given by:
\(P(A\cap B) = P(B).P(A|B)\)
Let's assume, If A and B are two independent events in an experiment, then the probability of both events occurring at the same time is given by:
\(P(A \cap B) = P(A).P(B)\)
Read More: Multiplication Theorem on Probability