The maximum kinetic energy of emitted electrons is given by Einstein’s photoelectric equation:
\[
K_{\text{max}} = h \nu - \phi,
\]
where:
\begin{itemize}
\item $h \nu$ is the photon energy,
\item $\phi$ is the work function of the metal.
\end{itemize}
For beam A:
\[
K_{\text{max,A}} = 3.3 - 2.3 = 1.0 \, \text{eV}.
\]
For beam B:
\[
K_{\text{max,B}} = 11.3 - 2.3 = 9.0 \, \text{eV}.
\]
The maximum speed of the emitted electrons is related to the kinetic energy by:
\[
K_{\text{max}} = \frac{1}{2} m v_{\text{max}}^2.
\]
Thus:
\[
v_{\text{max}} = \sqrt{\frac{2 K_{\text{max}}}{m}}.
\]
The ratio of speeds is:
\[
\frac{v_{\text{max,A}}}{v_{\text{max,B}}} = \sqrt{\frac{K_{\text{max,A}}}{K_{\text{max,B}}}}.
\]
Substitute the values:
\[
\frac{v_{\text{max,A}}}{v_{\text{max,B}}} = \sqrt{\frac{1.0}{9.0}} = \frac{1}{3}.
\]
Thus, the ratio of maximum speeds is:
\[
\boxed{\frac{1}{3}}.
\]