Step 1: Identify Logic Gates in the Circuit
The circuit consists of:
- An OR gate taking inputs \( A \) and \( B \).
- An AND gate taking inputs \( A \) and \( B \).
- The outputs of these gates are passed through another OR gate.
Step 2: Derive Boolean Expression
The intermediate outputs are:
\[
X = A + B \quad \text{(OR gate)}
\]
\[
Z = A \cdot B \quad \text{(AND gate)}
\]
The final output \( Y \) is obtained as:
\[
Y = X + Z = (A + B) + (A \cdot B)
\]
Using Boolean algebra:
\[
Y = A + B
\]
Step 3: Construct Truth Table
\[
\begin{array}{|c|c|c|}
\hline
A & B & Y \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\hline
\end{array}
\]
Final Answer: The correct truth table matches option (3).