Question:

To get an output value $ 1 $ from the given circuit, the input values of $ A $, $ B $, and $ C $ are:
output value 1 from the given circuit,

Show Hint

To solve digital logic circuits: 1. Identify the type of gates (AND, OR, NOT). 2. Write the Boolean expression for the output. 3. Substitute input values to determine the output.
Updated On: Jun 3, 2025
  • $ 0, 1, 0 $
  • $ 0, 0, 1 $
  • $ 1, 0, 1 $
  • $ 1, 0, 0 $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

\textbf{Step 1: Analyze the Circuit} The given circuit consists of:
1. An AND gate with inputs $ A $ and $ B $.
2. An OR gate with inputs from the AND gate and $ C $.
The output $ Y $ is determined by the following logic: $$ Y = (\text{AND}(A, B)) \, \text{OR} \, C $$ This can be expressed as:
$$ Y = (A \cdot B) + C $$ where:
$ \cdot $ represents the AND operation,
$ + $ represents the OR operation.
Step 2: Determine Conditions for Output $ Y = 1 $
For $ Y = 1 $, either: 1. The AND gate output ($ A \cdot B $) must be $ 1 $, or 2. $ C = 1 $. Case 1: AND Gate Output ($ A \cdot B = 1 $)
For $ A \cdot B = 1 $, both $ A $ and $ B $ must be $ 1 $: $$ A = 1, \quad B = 1 $$ Case 2: $ C = 1 $
If $ C = 1 $, the OR gate will output $ 1 $ regardless of the AND gate's output. \textbf{Step 3: Check Each Option} Option (1): $ A = 0, B = 1, C = 0 $ $$ Y = (0 \cdot 1) + 0 = 0 + 0 = 0 \quad \text{(Incorrect)} $$ Option (2): $ A = 0, B = 0, C = 1 $ $$ Y = (0 \cdot 0) + 1 = 0 + 1 = 1 \quad \text{(Correct, but not the only solution)} $$ Option (3): $ A = 1, B = 0, C = 1 $ $$ Y = (1 \cdot 0) + 1 = 0 + 1 = 1 \quad \text{(Correct)} $$ Option (4): $ A = 1, B = 0, C = 0 $ $$ Y = (1 \cdot 0) + 0 = 0 + 0 = 0 \quad \text{(Incorrect)} $$ Step 4: Verify the Correct Option
From the analysis, Option (3) satisfies the condition $ Y = 1 $: $$ A = 1, \quad B = 0, \quad C = 1 $$
Was this answer helpful?
0
0