Step 1: Understanding the Concept:
This is a geometric construction problem. We need to construct tangents to a given circle from a point outside the circle using a compass and a straightedge. The construction relies on the property that the angle in a semicircle is a right angle, which ensures the tangent is perpendicular to the radius at the point of contact.
Step 2: Key Formula or Approach:
The steps for construction are as follows:
Steps of Construction: \[\begin{array}{rl} 1. & \text{Draw a circle with centre O and radius 4.1 cm.} \\ 2. & \text{Take a point P in the exterior of the circle such that the distance OP = 7.3 cm.} \\ 3. & \text{Draw the line segment OP.} \\ 4. & \text{Construct the perpendicular bisector of the segment OP. Let M be the midpoint of OP.} \\ 5. & \text{With M as the centre and radius equal to MO (or MP), draw an arc that intersects the given circle at two distinct points, say A and B.} \\ 6. & \text{Draw the lines PA and PB.} \\ 7. & \text{Lines PA and PB are the required tangents to the circle from point P.} \\ \end{array}\] Justification (Optional but good to know):
Join OA. \(\triangle\)OAP lies in the semicircle with diameter OP. Therefore, \(\angle\)OAP = 90\(^\circ\) (angle in a semicircle). Since OA is a radius and \(\angle\)OAP is 90\(^\circ\), the line PA must be a tangent to the circle at point A. Similarly, PB is a tangent at point B.
Step 4: Final Answer:
The construction should be performed on paper following the steps above to get the required tangents.
рд╕рд░рд╕реНрд╡рддреА рд╡рд┐рджреНрдпрд╛рд▓рдп, рдХреЛрд▓реНрд╣рд╛рдкреБрд░ рдореЗрдВ рдордирд╛рдП рдЧрдП 'рд╢рд┐рдХреНрд╖рдХ рджрд┐рд╡рд╕' рд╕рдорд╛рд░реЛрд╣ рдХрд╛ 70 рд╕реЗ 80 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡реГрддреНрддрд╛рдВрдд рд▓реЗрдЦрди рдХреАрдЬрд┐рдПред
(рд╡реГрддреНрддрд╛рдВрдд рдореЗрдВ рд╕реНрдерд▓, рдХрд╛рд▓, рдШрдЯрдирд╛ рдХрд╛ рдЙрд▓реНрд▓реЗрдЦ рд╣реЛрдирд╛ рдЕрдирд┐рд╡рд╛рд░реНрдп рд╣реИ)
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдЬрд╛рдирдХрд╛рд░реА рдХреЗ рдЖрдзрд╛рд░ рдкрд░ 50 рд╕реЗ 60 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡рд┐рдЬреНрдЮрд╛рдкрди рддреИрдпрд╛рд░ рдХреАрдЬрд┐рдП :