Step 1: Logic implementation using a 4:1 multiplexer.
The output of a 4:1 MUX is:
\[
F = \overline{S_1}\overline{S_0}I_0 + \overline{S_1}S_0I_1 + S_1\overline{S_0}I_2 + S_1S_0I_3,
\]
where \( S_1 = X \) and \( S_0 = Y \).
Step 2: Boolean function decomposition.
The given function is:
\[
F(X, Y) = XY + \overline{X}.
\]
Expanding it for all combinations of \( X \) and \( Y \):
\[
F = \overline{X}P + X\overline{Y}Q + XYR + XYS.
\]
Comparing with the MUX equation, we assign:
\[
P = 1, Q = 1, R = 1, S = 0.
\]
Hence, the correct option is (B).