To find a real root of the equation \( x^3 + 4x^2 - 10 = 0 \) in the interval \( \left( 1, \frac{3}{2} \right) \) using the fixed-point iteration scheme, consider the following two statements:
Statement 1 S1: The iteration scheme \( x_{k+1} = \sqrt{\frac{10}{4 + x_k}}, \, k = 0, 1, 2, \ldots \) converges for any initial guess \( x_0 \in \left( 1, \frac{3}{2} \right) \).
Statement 2 S2: The iteration scheme \( x_{k+1} = \frac{1}{2} \sqrt{10 - x_k^3}, \, k = 0, 1, 2, \ldots \) diverges for some initial guess \( x_0 \in \left( 1, \frac{3}{2} \right) \).
Consider the following series:
(i) \( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \)
(ii) \( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \)
(iii) \( \sum_{n=1}^{\infty} \frac{1}{n!} \)
Choose the correct option.
A pot contains two red balls and two blue balls. Two balls are drawn from this pot randomly without replacement. What is the probability that the two balls drawn have different colours?
Consider a frequency-modulated (FM) signal \[ f(t) = A_c \cos(2\pi f_c t + 3 \sin(2\pi f_1 t) + 4 \sin(6\pi f_1 t)), \] where \( A_c \) and \( f_c \) are, respectively, the amplitude and frequency (in Hz) of the carrier waveform. The frequency \( f_1 \) is in Hz, and assume that \( f_c>100 f_1 \). The peak frequency deviation of the FM signal in Hz is _________.
Let \( M \) be a \( 7 \times 7 \) matrix with entries in \( \mathbb{R} \) and having the characteristic polynomial \[ c_M(x) = (x - 1)^\alpha (x - 2)^\beta (x - 3)^2, \] where \( \alpha>\beta \). Let \( {rank}(M - I_7) = {rank}(M - 2I_7) = {rank}(M - 3I_7) = 5 \), where \( I_7 \) is the \( 7 \times 7 \) identity matrix.
If \( m_M(x) \) is the minimal polynomial of \( M \), then \( m_M(5) \) is equal to __________ (in integer).
Ravi had _________ younger brother who taught at _________ university. He was widely regarded as _________ honorable man.
Select the option with the correct sequence of articles to fill in the blanks.