To find a real root of the equation \( x^3 + 4x^2 - 10 = 0 \) in the interval \( \left( 1, \frac{3}{2} \right) \) using the fixed-point iteration scheme, consider the following two statements:
Statement 1 S1: The iteration scheme \( x_{k+1} = \sqrt{\frac{10}{4 + x_k}}, \, k = 0, 1, 2, \ldots \) converges for any initial guess \( x_0 \in \left( 1, \frac{3}{2} \right) \).
Statement 2 S2: The iteration scheme \( x_{k+1} = \frac{1}{2} \sqrt{10 - x_k^3}, \, k = 0, 1, 2, \ldots \) diverges for some initial guess \( x_0 \in \left( 1, \frac{3}{2} \right) \).
Consider a frequency-modulated (FM) signal \[ f(t) = A_c \cos(2\pi f_c t + 3 \sin(2\pi f_1 t) + 4 \sin(6\pi f_1 t)), \] where \( A_c \) and \( f_c \) are, respectively, the amplitude and frequency (in Hz) of the carrier waveform. The frequency \( f_1 \) is in Hz, and assume that \( f_c>100 f_1 \). The peak frequency deviation of the FM signal in Hz is _________.
A pot contains two red balls and two blue balls. Two balls are drawn from this pot randomly without replacement. What is the probability that the two balls drawn have different colours?
Consider the following series:
(i) \( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \)
(ii) \( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \)
(iii) \( \sum_{n=1}^{\infty} \frac{1}{n!} \)
Choose the correct option.
Consider the relationships among P, Q, R, S, and T:
• P is the brother of Q.
• S is the daughter of Q.
• T is the sister of S.
• R is the mother of Q.
The following statements are made based on the relationships given above.
(1) R is the grandmother of S.
(2) P is the uncle of S and T.
(3) R has only one son.
(4) Q has only one daughter.
Which one of the following options is correct?
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).
Ravi had _________ younger brother who taught at _________ university. He was widely regarded as _________ honorable man.
Select the option with the correct sequence of articles to fill in the blanks.